A theoretical solution to MAP-EM partial volume segmentation of medical images
نویسندگان
چکیده
منابع مشابه
A theoretical solution to MAP-EM partial volume segmentation of medical images
Voxels near tissue borders in medical images contain useful clinical information, but are subject to severe partial volume (PV) effect, which is a major cause of imprecision in quantitative volumetric and texture analysis. When modeling each tissue type as a conditionally independent Gaussian distribution, the tissue mixture fractions in each voxel via the modeled unobservable random processes ...
متن کاملM14-297 Partial Volume Segmentation of Medical Images
Image segmentation plays an important role in medical image processing. The aim of conventional hard segmentation methods is to assign a unique label to each voxel. However, due to the limited spatial resolution of medical imaging equipment and the complex anatomic structure of soft tissues, a single voxel in a medical image may be composed of several tissue types, which is called partial volum...
متن کاملInvestigation on an EM Framework for Partial Volume Image Segmentation
This work investigates a new partial volume (PV) image segmentation framework with comparison to a previous PV approach. The new framework utilizes an expectation-maximization (EM) algorithm to estimate simultaneously (1) tissue fractions in each image voxel and (2) statistical model parameters of the image data under the principle of maximum a posteriori probability (MAP). The previous EM appr...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملMAP MRF joint segmentation and registration of medical images
The problems of segmentation and registration are traditionally approached individually, yet the accuracy of one is of great importance in influencing the success of the other. In this paper, we aim to show that more accurate and robust results may be obtained through seeking a joint solution to these linked processes. The outlined approach applies Markov random fields in the solution of a maxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Imaging Systems and Technology
سال: 2009
ISSN: 0899-9457,1098-1098
DOI: 10.1002/ima.20187